Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data
نویسندگان
چکیده
Many systems are partially stochastic in nature. We have derived datadriven approaches for extracting stochastic state machines (Markov models) directly from observed data. This chapter provides an overview of our approach with numerous practical applications. We have used this approach for inferring shipping patterns, exploiting computer system side-channel information, and detecting botnet activities. For contrast, we include a related data-driven statistical inferencing approach that detects and localizes radiation sources.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملClimate change scenarios generated by using GCM outputs and statistical downscaling in an arid region
Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...
متن کاملارائه رویکردی نوین یادگیری ماشین برای شناسایی و تجزیه و تحلیل دانش پدیدههای استثنایی
Learning logic of exceptions is a substantial challenge in data mining and knowledge discovery. Exceptional phenomena detection takes place among huge records in a database which contains a large number of normal records and a few of exceptional ones. This is important to promote the confidence to a limited number of exceptional records for effective learning. In this study, a new approach base...
متن کاملApplication of Markov Processes to the Machine Delays Analysis
Production and non-productive equipment and personnel delays are a critical element of any production system. The frequency and length of delays impact heavily on the production and economic efficiency of these systems. Machining processes in wood industry are particularly vulnerable to productive and non-productive delays. Whereas, traditional manufacturing industries usually operate on homoge...
متن کاملAsymmetric Effects of Monetary Policy and Business Cycles in Iran using Markov-switching Models
This paper investigates the asymmetric effects of monetary policy on economic growth over business cycles in Iran. Estimating the models using the Hamilton (1989) Markov-switching model and by employing the data for 1960-2012, the results well identify two regimes characterized as expansion and recession. Moreover, the results show that an expansionary monetary policy has a positive and statist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.07573 شماره
صفحات -
تاریخ انتشار 2017